Twitter Icon Facebook


 DONATE TO VMS


   Anatomy

   Biochemistry

   Boards

   Book Store

   Cardiovascular

   Endocrinology

   Financial Articles

   Gastrointestinal

   Genitourinary

   Gynecology

   Healthy Living

   Hematology

   How to Section

   Infectious    Diseases

   Musculoskeletal

   Neurological

   Nutrition

   Obstetrics

   Pharmacology

   Physical
   Examination

   Physiology

   Psychiatry

   Pulmonary

   Renal

   Rheumatology

   Useful Links

   Home

   Resources for...

 Medical Students

   YouTube

      Google Analytics Alternative

Looking for help with nurse application essay? Visit MyCustomEssay.com and get it written from scratch.

Get custom college essays from https://123writings.com - a writing service for college students.

Ewritingservice.com is the custom writing service thousands of students trust all over the world.



    

    

The Rexed Laminae

Laminae 1 || Laminae 2 || Laminae 3 || Laminae 4 || Laminae 5
Laminae 6 || Laminae 7 || Laminae 8 || Laminae 9 || Laminae 10
Overview || References and Resources || Comment || Search

Anatomy Introduction





The Rexed laminae represent a system of organizing the neurons of the spinal cord (they were actually designed to torture medical students, I joke of course, sort of...). They are named after Dr. Bror Rexed who was a Swedish neuroscientist.

There are ten Rexed laminae and they roughly follow a topographic organization, with the lower numbers being towards the back of the spinal cord (ie: posterior) and the higher numbers being towards the front of the spinal cord (ie: anterior).

It is important to note that the Rexed laminae are not strictly organized based on anatomical location, but are actually based on the types, and functions, of the neurons in each laminae. Let's discuss each of the ten layers in more detail (let the fun begin!)...

Top

Laminae One

Layer one contains neurons that receive pain and temperature information from the body and limbs via the axons coming from the dorsal root ganglia. The neurons in layer one then pass this information along to the brain via the spinothalamic tract on the opposite side of the cord.

Top

Laminae Two (Substantia Gelatinosa)

Layer two, which is also known as the substantia gelatinosa, gets information from the spinothalamic tract as well as the dorsal columns. The spinothalamic tract relays information about painful stimuli and the dorsal columns relay information about non-painful stimuli.

Therefore, the neurons in layer two receive information about both painful and non-painful stimuli. These neurons then send information to Rexed laminae three and four. The neurons in these laminae then pass the sensory information to the brain where it is further interpreted. Interestingly, there are large amounts of opiate (ie: think morphine or heroin) responsive neurons in laminae two of the spinal cord.

Top

Laminae Three and Four (Nucleus Proprius)

The nucleus proprius, aka layers three and four, receives information from the body about touch and proprioception (hence the name "proprius"). It then relays this information to numerous areas in the brainstem, brain, and other Rexed laminae for further processing.

Top

Laminae Five

Nobody knows exactly what the hell layer five does, but it receives information from a wide variety of sources including pain sensation from the bodies' organs, as well as information about movement from the brain (via the corticospinal tracts) and brainstem (via the rubrospinal tracts).

Top

Laminae Six

The sixth layer can be divided into two sections: medial and lateral. The medial layer (ie: towards the middle of the cord) gets input from muscle spindles. Muscle spindles (by way of type Ia fibers) tell the spinal cord how much a given muscle is being stretched. The neurons in the medial layer act as messengers for this information.

The lateral layer (ie: towards the periphery of the cord) gets information from the brain and brainstem via multiple descending tracts.

So what is the purpose of the sixth layer? The neurons in this layer send information to two places: the cerebellum (via the ventral spinocerebellar tracts) and motor neurons in the anterior horn of the spinal cord.

The cerebellum interprets the information and modulates movement and muscle tone accordingly. The direct communication between the neurons in Rexed laminae six and the motor neurons in the anterior horns are responsible for spinal reflexes.

Top

Laminae Seven (Zona Intermedia)

Layer seven is most prominent between C8 and L2. This prominence is known as the dorsal nucleus of Clarke. The neurons in Clarke's nucleus receive lower extremity position and sensory information and then pass that information to the cerebellum via the dorsal spinocerebellar tract.

Layer seven also receives and sends information from and to the bodies' organs. The sympathetic and parasympathetic autonomic system have their pre-ganglionic neurons in Rexed laminae seven. These neurons are responsible for the fight or flight response (sympathetic) and rest and digest (parasympathetic) functions of the bodies' organs.

Top

Laminae Eight

Neurons in layer eight obtain information from the reticulospinal and vestibulospinal tracts. The reticulospinal tract is important in maintaing the tone of muscles that flex joints. The vestibulospinal system helps maintain muscles that are important in extending joints.

So what do the neurons in layer eight do? They take competing information from the reticulospinal and vestibulospinal tracts and help modulate movement and muscular tone. Pretty simple, huh?

Top

Laminae Nine

Finally an easy layer! This layer contains the α, β, and γ motor neurons of the cord. Simply stated, these neurons send impulses to muscles leading to movement. The more complex story is that motor neurons in layer nine are influenced by numerous inputs from other Rexed laminae, as well as by descending information coming from the brain.

The neurons in layer nine are topographically organized based on what type of muscle (flexor or extender) they control, as well as where in the body that muscle is located (axial or limb).

Neurons that are located towards the center of the cord control axial muscles and those located towards the periphery of the cord control the muscles of the limbs. In similar fashion, neurons that control muscles that extend joints are located towards the front of the layer (ie: anterior), and those that flex joints are located towards the back of layer nine (ie: posterior).

Top

Laminae Ten

Like layer five, no one really knows what layer ten actually does. We do know that it is composed of neurons that surround the fluid filled central canal of the spinal cord like a donut. Hungry yet???

Top

Overview

The Rexed laminae are layers of neurons within the spinal cord that perform specific functions. In general, neurons in the laminae towards the back of the cord (ie: laminaes one, two, three, four, and five) are predominately involved in interpreting and relaying sensory information from the body to the brain. On the other hand, neurons in the laminae towards the front of the cord (ie: laminaes seven, eight, and nine) are involved primarily in executing movement and controlling the functions of the bodies organs.

Top

Related Articles

- The pons

- Radial nerve

- Sciatic nerve

- Internal capsule

- Basal ganglia (direct pathway)

- Basal ganglia (indirect pathway)

- Stroke

Top

References and Resources

(1) Kitahata L, Kosaka Y, Taub A, et al. Lamina-specific suppression of dorsal-horn unit activity by morphine sulfate. Anesthesiology, V41, issue 1, 1974.

(2) Anamizu Y, Seichi A, Tsuzuki N, et al. Age-related changes in histogram pattern of anterior horn cells in human cervical spinal cord. Neuropathology. 2006 Dec;26(6):533-9.

(3) Stephens B, Guiloff RJ, Navarrete R, et al. Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study. J Neurol Sci. 2006 May 15;244(1-2):41-58.

(4) Baehr M, Frotscher M. Duus' Topical Diagnosis in Neurology: Anatomy, Physiology, Signs, Symptoms. Fourth Edition. Stuttgart: Thieme, 2005.

(5) Neuroscience. Fourth Edition. Sinauer Associates, Inc., 2007.

Top

HTML Comment Box is loading comments...

Top

Search VirtualMedStudent.com

Loading